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Abstract

In precision agriculture, detailed geoinformation on plant and soil properties
plays an important role, e.g., in crop protection or the application of
fertilizers. This paper presents a comparative classification analysis for post-
harvest growth detection using geometric and radiometric point cloud
features of terrestrial laser scanning (TLS) data, considering the local
neighborhood of each point. Radiometric correction of the TLS data was
performed via an empirical range-correction function derived from a field
experiment. Thereafter, the corrected amplitude and local elevation features
were explored regarding their importance for classification. For the
comparison, tree induction, Naive Bayes, and k-Means-derived classifiers
were tested for different point densities to distinguish between ground and
post-harvest growth. The classification performance was validated against
highly detailed RGB reference images and the red edge normalized
difference vegetation index (NDVIys), derived from a hyperspectral sensor.
Using both geometric and radiometric features, we achieved a precision of
99% with the tree induction. Compared to the reference image classification,
the calculated post-harvest growth coverage map reached an accuracy of
80%. RGB and LiDAR-derived coverage showed a polynomial correlation
to NDVI;os of degree two with R? of 0.8 and 0.7, respectively. Larger post-
harvest growth patches (> 10 x 10 cm) could already be detected by a point
density of 2 pts./0.01 m*>. The results indicate a high potential of
radiometric and geometric LiIDAR point cloud features for the identification
of post-harvest growth using tree induction classification. The proposed
technique can potentially be applied over larger areas using vehicle-
mounted scanners.
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1. Introduction
1.1. Importance of Post-Harvest Growth Management

Detection and control of post-harvest growth (weed and second growth) are
important fields of precision agriculture (PA) (Weis et al., 2008). In most crops, post-
harvest growth negatively influences yields because of the additional competition for
nutrients, water, and light, or due to insects and diseases settling down within post-
harvest growth (Zimdahl, 2013). In case of second growth, such problems are due to
seeds of low quality, which fall to the ground as a result of bad weather conditions and
delayed harvest, or due to the cultivation of transgenic crops in combination with less
tillage. Depending on the crop, seeds can be germinable for many years and influence the
growing crops. Although these effects and the countermeasures depend strongly on crop
and weed species, lower crop quantity and quality occur in general if post-harvest growth
is not controlled. Common measures for weed control are the extensive pre- and post-
emergent application of chemicals (Thorp & Tian, 2004). On the one hand extensive use
of pesticides reduces the weed appearance, on the other hand it has negative direct and
indirect effects on the ecosystem such as reduced soil quality or water pollution (Arias-
Estévez et al., 2008; Smith et al., 2011). Apart from the ecological aspects, farmers have
to stick to standardized environmental regulations and laws such as the European Water
Framework Directive (WFD) (2000/60EG) or regulations of cross-compliance. In
European countries the usage of pesticides is strictly regulated to minimize negative
environmental effects. For example, the German law (§12 f. IV PfISchG) prescribes the
use of economic weed thresholds based on plants per square meter at which control is
economically justified. Such thresholds provide valuable decision aids for weed control,
indicating at which weed density pesticides need to be applied (Weis et al., 2008).
However, these thresholds discount the nature of weeds growing in patches (Lamb &
Brown, 2001). The most effective means of weed control are prevention (control prior to
planting), early detection (within the first stages of growth) and eradication (Christensen
et al., 2009). The concept of site-specific weed management (SSWM) in precision
farming thus plays an important role in reducing the negative environmental effects of
weed control. At the same time it can improve the efficiency of growing crops
(Christensen et al., 2009).

1.2. Methods for Site-Specific Management and Mapping

Crop and field management in PA apply techniques and methods gathering site-
specific information. Site-specific information is geo-referenced information of spatially
distributed environmental factors and their heterogeneity and variability (soil properties,
nutrients, plant diseases or weed emergence) (Torres-Sanchez et al, 2013). Such
information serves as a basis for precisely located weed control applications (Heege,
2013). Within weed management, accurate herbicide application requires a precise
detection and positioning of weeds. Mapping of weeds can be done manually by
recognizing weed species in the field or indirectly by remote sensing of total plant
coverage, leaf area index, and photosynthetic activity or plant height with sensors located
on ground vehicles (Peteinatos et al., 2014). A series of optoelectronic, imaging, or
distance sensors have been widely applied in agricultural studies (Mulla, 2013; Vibhute
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& Gawali, 2013) for mapping the environmental factors such as chemical soil properties
(Anderson, 2009; Jarmer et al., 2008; Palacios-Orueta & Ustin, 1998) and plant water
content (Meron et al., 2010), as well as for capturing crop conditions (Jarmer, 2013;
Lumme et al., 2008 , Tilly et al., 2014) and weed distribution (Andujar et al., 2013; Lamb
& Brown, 2001; Torres-Sanchez et al., 2013). Based on the selective spectral absorption,
different indices such as the normalized differenced vegetation index (NDVI (Feyaerts &
Gool, 2001)), the excess green index (ExG (Sena et al., 2011)) or the vegetative index
(VI, (Hague, 2006)) are usually calculated to separate soil and plants (Peteinatos et al.,
2014) for weed detection. Optical sensors are often combined with an herbicide sprayer,
which is automatically turned on when the used index exceeds a specific threshold.
However, the integrated value of plant and soil coverage for the whole field of view
limits the spatial information and thus the detection of smaller weed patches. Further loss
in classification accuracy is due to influencing factors such as changing ambient light
conditions in the field and the need of rectification or repeated calibration in the field
(Peteinatos et al., 2014). Weed detection can also be done by means of image processing
methods, using infrared, multispectral, or RGB cameras to extract plant properties
(Andgjar et al., 2011; Gerhards & Oebel, 2006; Romeo et al., 2013; Weis & Gerhards,
2007) employing color, shape, and texture features (Guijarro et al., 2011; McCarthy et al.,
2010; Pérez et al., 2000; Rumpf et al., 2012; Tellaeche et al., 2011), either taken from a
low distance above ground mounted on agricultural vehicles or by Unmanned Aerial
Vehicles (UAV) based remote sensing (Pefia et al., 2013; Primicerio et al., 2012; Torres-
Sanchez et al., 2013; Zhang & Kovacs, 2012).

Imaging sensors are able to provide significant results concerning the location of
weeds and crops, but they disregard 3D geometric information like plant height.
However, height is an important parameter for estimating the amount of herbicide,
considering the biomass of weeds or second growths.

1.3. LiDAR for Vegetation Analysis and Agricultural Applications

Light detection and ranging (LiDAR), also referred to as laser scanning (LS), has
evolved into a state-of-the-art technology for highly accurate 3D data acquisition.
Airborne as well as ground-based systems are used to capture information about
agricultural objects, however most recent studies use terrestrial laser scanning (TLS).
Compared to airborne LS, the major advantages of TLS are a low-cost operation, easier
multitemporal data acquisition, and high-density point clouds (multiple points per cm?
possible). LiDAR technology enables a detailed geometric (high-resolution XYZ point
clouds and derived parameters, e.g., object height) and radiometric (e.g., strength of
backscatter (Hofle & Pfeifer, 2007)) representation of the scanned object. Several studies
have already indicated the potential of LS in vegetation description, for example in tree
(Rosell & Sanz, 2012; Rosell et al., 2009; Sanz-Cortiella et al., 2011;) or grain crop
monitoring (Hofle, 2014; Llorens et al., 2011; Lumme et al., 2008; Saeys et al., 2009)
with a stationary or tractor-mounted scanner. Until now, LiDAR sensors in agricultural
applications are mainly used for gathering the geometric information for, e.g., estimating
crop height for biomass calculation or for growth monitoring (Ehlert et al., 2009;
Hoftmeister et al., 2010; Hosoi & Omasa, 2009; Tilly et al., 2014; Zhang & Grift, 2012;).
Radiometric information has so far rarely been used due to calibration issues, but in
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recent years this information has been increasingly applied for object detection (Hofle &
Hollaus, 2010; Rutzinger et al., 2008). Its application in an agricultural context is still
rare. AndUjar et al. (2013) used LiDAR height and reflection measurements for
vegetation detection captured at 905 nm wavelength with a detection rate of 77.7% for S.
halepense. Similar results are demonstrated by Koenig et al. (2013) and Hofle (2014)
using height differences in combination with the amplitude in spatial context to
distinguish soil and plant objects.

1.4. Hypotheses and Objectives

From this overview we hypothesize (i) that TLS can be used for post-harvest
growth detection and discrimination and (ii) that for a complete and correct detection of
post-harvest growth patches in TLS data, a combined use of geometric and radiometric
information in a local neighbourhood will lead to better results, compared to a sole use of
geometric information. In order to verify this hypotheses, the following objectives are
addressed: (i) to evaluate the accuracy and performance of TLS for post-harvest growth
detection; (ii) to assess the possibilities of radiometric information to discriminate post-
harvest growth from soil; and (iii) to evaluate the effect of point density on post-harvest
growth detection. The objectives were examined by applying correlation analysis and
different classification methods of derived geometric and radiometric information of TLS
data.

2. Study site and Datasets

The study was conducted with data from a harvested and grubbed winter barley
plot (about 7 m x 66 m) with second growth of winter barley and sparsely spread weed of
unknown species at the Julius-Kiihn-Institut for Crop and Soil Science (JKI), Brunswick,
Germany (52.288N, 10.434E). The survey was performed on 27" of August 2013 two
weeks after grubbing and four weeks after harvesting. Within the investigated crop field,
two reference sample plots (I mx 1 m) were captured for training and testing the
developed methods.

2.1. Terrestrial Laser Scanning Data

A time-of-flight scanner Riegl VZ-400 with full-waveform online echo detection
was used to collect data from six elevated scan positions (scanner height above ground
~4 m) located around the field (Fig. 1). The laser scanner has a near-infrared laser beam
(1550 nm) with a beam divergence of 0.3 mrad and a range accuracy of 5 mm at 100 m
according to the manufacturer's datasheet (Riegl, Datasheet VZ-400). A nominal point
spacing of 5 mm at 10 m distance was chosen for four scans and 3 mm nominal spacing
for two scans for analysis regarding the point density. The study area was covered by a
mean density of 28 points per 0.01 m?, resulting in a point cloud of about 10.8 x 10°
points in total.

Co-registration of scan positions was performed using tie points (cylindric
reflectors) with high reflectance and six plane surface patches (e. g. EUR-palett) placed
around the field. Following the initial alignment of the scans, the fine registration by the
iterative closest point (ICP) algorithm integrated into the RiSCAN PRO software results
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in a 0.0143 m standard deviation of error distribution between the scans. To guarantee
lowest alignment errors, only points with range <30 m were chosen for the analysis. After
the co-registration of the single scan positions, the point cloud was exported into an
ASCII file containing the XYZ coordinates, range [m] and signal amplitude [digital
number DN] for each laser point. The signal amplitude was rescaled to [0,1] based on the
known reflectance of a reference target which was captured with every scan. The
reference target (20 x 20 cm) was made of Spectralon® with Lambertian scattering
properties. At the scanner’s operating wavelength of 1550 nm, the nominal reflectance of
the target was 92.5%. The target was mounted on a tripod, its center was oriented to the
scanner, and the distance from target to scanner differed with each scan position.

Within the investigated field, training data was manually extracted from the point
cloud and further refined by visual comparison to the RGB images. The training data
consists of several small samples of ground and post-harvest growth data and was used in
the feature calculation, the correlation analysis, and the model construction.
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Fig. 1. Study area, covering a harvested and grubbed winter barley field with patches of
post-harvest growth of winter barley. Scan positions and location of the two sample plots
are given as well as an elevation profile within the field showing points of post-harvest
growth and ground, colored by elevation. Perspective 1: panorama at scan position 5;
Perspective 2: measuring setup for the acquisition of RGB images and hyperspectral data
at the two sample plots.



2.2. Reference Data

The point cloud based classification results were validated with 1) an independent
classification of the 1 m? reference plots done by image analysis of high-resolution RGB
photographs and 2) by the NDVIyys calculated from hyperspectral data. The RGB image
post-harvest growth detection was based on georeferenced binary images of one square
meter and was realized using a decision tree (DT) with one rule node. The images were
acquired perpendicular from a height of 1.5 m, with a ground resolution of 0.05 mm. Two
threshold values (one for the red and one for the blue band of the RGB image) were used
to classify the image with two classes: 'ground' and 'post-harvest growth'. The accuracy
assessment of RGB image classification was based on stratified random sampling of 256
points from the classified image, with at least 100 points per class, and the manual
comparison of them with the original RGB image. The RGB image classification
achieved an overall accuracy of 94.9%. The hyperspectral data of the whole field was
captured with the Penta-Spek system developed by the JKI (Lilienthal et al., 2012;
Lilienthal & Schnug, 2010). Compared to airborne acquisition, atmospheric and
geometric corrections were negligible due to the proximity of sensor and ground. The
system comprised five hyperspectral sensors (Ocean Optics Inc.) with an effective
resolution of 46 channels at 10 nm and a minimal detection time of 3 msec. Four sensors
were oriented groundwards and one skywards to measure the irradiation reference and to
correct the sensors. Thus, the spectral reflections could be directly determined in the
field. All sensors covered the same spectral range of 400 nm to 925 nm. The four sensors
were mounted row-wise 25 cm apart from each other and 2 m above the ground on a
frame, each having a ground resolution of 25 cm. NDVI;ys was calculated for each sensor
and resulted in 16 measuring points. The two reference datasets were co-registered to the
point cloud via corresponding point pairs.

3. Methods

The developed workflow (Fig. 2) was based on the assumption that post-harvest
growth is characterized by: 1) a defined vertical extent (height above ground) and a
variation of local neighboring points (geometric criteria); and 2) differing amplitudes of
post-harvest growth and ground (radiometric criteria). Here, the category 'ground'
comprised bare soil and dry straw of winter barley lying on the ground, whereas weed
and second growth of winter barley constituted the category 'post-harvest growth'.
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Fig. 2. Workflow for mapping 'post-harvest growth' by using full-waveform point clouds
of varying point density. After preprocessing of radiometric correction and feature
calculation within a local neighborhood for the whole data, four different approaches of
classification and model construction were applied to training data. The derived models
were evaluated by assigning to test data and by using the classified RGB image and
NDVI5s5 derived from hyperspectral data.

3.1. Data Preprocessing
3.1.1. Data Cleaning: Radiometric Correction

Data cleaning attempts to identify and remove outliers in order to correct
inconsistencies in the data. Apart from geometric features (XYZ coordinates) the laser
scanner gathers radiometric features (e.g. signal amplitude) from all scanned surfaces.
The recorded signal is affected by the scanning geometry, the target properties, and
atmospheric and sensor settings and parameters (Hofle, 2014; Kaasalainen et al., 2011).
Scanning geometry is described by range (distance) and incoming beam incidence angle
to the target (Kaasalainen et al., 2011), which influences the backscattered signal. For
TLS, the distance effect seems to depend mostly on the instrument (detector effects or
receiver optics) (Hofle, 2014; Pfeifer et al., 2008) and not entirely following the //R? law
of the radar equation in near distances (< 20 m for Riegl VZ-400) as mostly valid for
ALS (Wagner, 2010). In our case, radiometric correction aimed at removal of the range
effect.

First, vertical outliers in the point cloud were removed manually. A data-driven
range correction approach was applied by estimating the range-amplitude function f(r)
and the resulting correction factor //f(r) for multiplying the recorded values from field
data (Hofle, 2014). The selected reference surface consists of a homogeneous
0.8 x 40.0 m subset of one scan position covering dry and bare soil. Due to artificially
managed and well understood soil conditions and mechanized harvesting, this area was
considered sufficiently homogeneous to serve as a reference. A moving median filter of
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amplitude with a 0.3 m overlap in range was applied to suppress small scale variations,
e.g. due to surface roughness. Polynomial functions from degree 1 to 14 were tested as
models for the radiometric correction. The correction function f(7) results from the Least-
Squares (LSQ) fitting of polynomial functions with the lowest root-mean-square error
(RMSE).

In order to evaluate the performance of the range correction, the same reference
target of 20 cm x 20 cm with known reflectance (Spectralon®) was placed in each scan
position, but always at a different distance from the scanner (from 16 m to 24 m). By
using the identical Spectralon target with known and constant reflectance, the corrected
amplitude values should be similar for all LIDAR points on the target in each scan. The
median amplitude was calculated for each target. Subsequently the standard deviation (in
percentage) of all target medians was assessed as a measure of success of the radiometric
correction. Thus, the standard deviation of all medians should be decreased strongly after
the range correction, thus indicating the removal of the distance effect.

3.1.2. Feature Calculation

Based on the assumptions, the detection of post-harvest growth relies on
geometric and radiometric features derived from XYZ coordinates and signal amplitude
considering the local neighborhood of each laser point. To specify the amplitude
threshold A7 for the calculation of the amplitude density feature, a first exploratory
analysis was performed by calculating statistics and distribution functions of the extracted
training data. The local neighborhood was defined as spherical neighborhood, thus
Euclidean metric in 3D with a fixed distance threshold (Filin & Pfeifer, 2005). Because
of the different shapes of post-harvest growth objects, nine local neighborhood features
were calculated with four distance thresholds (R) (0.002 m, 0.005 m, 0.02 m, 0.05 m) and
with the derived amplitude threshold. The feature calculation results in 36 additional
features attached to each laser point. The final feature space comprises 38 features in total
(Tab. 1): nine features calculated with four different distance thresholds, plus the
corrected amplitude and Riegl’s deviation. The importance of the computed features and
their impact on the classification were assessed in the feature correlation analysis as well
as in the model construction and model application.

Table 1. List of single laser point features derived in local neighborhood for
classification considering the search radius R and amplitude 4.

Symbol  [Unit] Description
A [DN] Corrected signal amplitude
EW Riegl‘s deviation (pulse shape of the echo signal

compared to the pulse shape representing the so-called
system response - area below the shape curve )

Concerning local neighborhood:
ER [%] Echo ratio (ratio of number of points in 3D and in 2D)

Amplitude density (percentage of points with

0
Adens (%] amplitude lower than threshold)



Acoy [DN] Coefficient of variation of all amplitude values

Amean [DN] Mean amplitude of all amplitude values

Dz (m] EléYation differénce between the single point and the
minimum elevation value

StdZ [m] Standard deviation of all elevation values

Zdiff [m] Range of maximum and minimum elevation value

Nbs2D Number of neighboring points in 2D (planimetric)

Nbs3D Number of neighboring points in 3D (sphere)

3.1.3. Data Correlation Analysis

To assess whether the calculated features are measuring the same construct, i.e.
whether they are redundant, a correlation analysis was performed. The analysis evaluates
the pairwise correlation between all features of the feature space (Tab. 1). With respect to
the degree of correlation, three cases can be assumed: 1) high correlation as an indicator
of redundant features (e.g. already linked in calculation), 2) high correlation of features
whose combination describes an object characteristic and 3) low correlation as an
indicator of independent features. The correlation and possible redundancies between
single features were analyzed by using the Pearson's product-moment correlation
coefficient (PCC) and the principal component analysis (PCA).

The PCC computes the correlation between all features and produces a weight
vector based on these correlations (Pearson, 1895). The degree of association between
two features is given as a number between -1 (negatively correlated) and +1 (positively
correlated). No correlation is indicated with a value equal to 0. The PCA performs a
dimensionality reduction using the covariance matrix (Jolliffe, 2002). The procedure
searches for k& n-dimensional orthogonal vectors that can be used to represent the data
(k <mn) most adequately. It converts possibly correlated attributes into a set of values of
uncorrelated features (principal components), which are ordered by decreasing
significance.

3.2. Classification

The classification aimed at extracting a model that predicts the class label 'post-
harvest growth' from TLS data. Different machine learning techniques for the
classification were tested: 1) supervised classifiers (tree induction and Naive Bayes), and
2) unsupervised classifier (k-Means) considering the geometric features, the radiometric
features, and a combination of geometric and radiometric features. The usage of different
approaches on the one hand prevented the usage of classification rules derived from over-
fitted modeling of one classifier, and on the other hand substantiated the possibility of
classifying the point cloud on the basis of different classification principles. The
approaches were selected based on the similar application of those for surface
classification (Alexander et al., 2010; Gerke & Jing, 2014; Pal & Mather, 2003),
vegetation detection in airborne (Ducic et al., 2006; Hofle & Hollaus, 2010; Rutzinger et
al., 2008; Zlinszky et al., 2012) and in terrestrial LIDAR data (Koenig et al., 2013).
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Cluster analysis like k-Means has been used in ALS applications such as tree detection
(Lindberg et al., 2013; Vauhkonen et al., 2012).

Data classification for each technique was performed in two-steps: 1) the learning
step, where the classification model was constructed based on training data, and 2) the
classification step, where the model assigned the class labels.

3.2.1. Model Construction

To predict the best class label within the supervised classification, the training
data were portioned relatively with a ratio of 0.7 by stratified sampling, based on Gini
Index Weighting (Breiman, 2001). 70 percent of the data were used in the training sub-
process (model learning) and 30 percent in the testing sub-process (model testing).

The advantage of tree induction lies in the straightforward handling to construct
classifiers with no requirements in domain knowledge or parameter setting. Additionally,
it requires no assumptions regarding distribution of input data and provides an intuitive
way to interpret classification structure (Hansen et al., 1996). The decision tree was
generated by recursive partitioning, using a minimal size for split of four and a minimal
leaf size of two. As criterion for tree induction the gain ratio was chosen with minimal
gain of 0.1 and confidence of 0.25. To prevent an over-specific or over-fitted tree, pre-
pruning with three alternative nodes for splitting was chosen. The gain ratio is a variant
of information gain and adjusts the information gain for each attribute allowing the
breadth and uniformity of the attribute values (Quinlan, 1986). Additionally, in the case
of random forest (RF) analysis, the number of trees was set to 20. The precision of the
applied RF depends on the strength of the individual classifiers and the measure of the
dependence between them. Every tree of the RF consists of a different set of learning
data, which can result in differences in accuracy towards the overall accuracy. The
predominant usage of features for discrimination within the RF denotes the features'
significance.

The Naive Bayes classifier is based on a probability model and requires only a
small amount of training data. The advantage lies in the assumption of independent
features, whereby only the variance of the features for each class label needs to be
determined and not the entire covariance matrix (Zhang, 2004). Laplacian correction was
used to avoid probability values of zero.

Unlike in classification, the class label is unknown in cluster analysis. Clustering
groups a set of data objects into multiple clusters such that objects within a given cluster
have high similarity, but are very dissimilar to objects in other clusters. The similarity is
based on a measure of distance in feature space. The most fundamental and simplest
cluster analysis is partitioning, which organizes the objects into several exclusive clusters.
It is an effective clustering method for small-size data sets (Han et al., 2012). In this study
we used k-Means, a centroid-based partitioning technique, to find the mutually exclusive
clusters. With a pre-defined number of clusters (k= 2) and Bregman Divergence with
Squared Euclidean Distance (Banerjee, 2005) as distance measure, the cluster analysis
run with maximal 1000 iterations for one of the 100 runs of k-Means. To assess the
feasibility of the applied k-Means, the silhouette coefficient (SC) was applied. The SC
measures the compactness of a cluster and the separation towards other clusters
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(Rousseeuw, 1987). For each object in the dataset, the average distance between the
object and all other objects in the cluster was calculated.

3.2.2. Accuracy Assessment and Model Application

The accuracy of the resulting models was assessed by calculating precision (p),
recall (r), Cohen's kappa (k), and error rate (e) (Equation (1)-(4)). Precision, recall, and «
are better suited to the class imbalance problem, where the main class of interest (post-
harvest growth) is rare. Precision (user’s accuracy) represents the exactness, i.e. the
percentage of tuples correctly labeled as 'post-harvest growth', whereas recall (producer’s
accuracy) is a measure of completeness, i.e. the percentage of post-harvest growth tuples,
which are labeled as such. The k (Cohen, 1960) was used as a measure of the quality of
the binary classification, representing the agreement between the two raters 'ground' and
'post-harvest growth' within LiDAR-based classification on the one hand and between the
two raters 'LiDAR-based classifier' and 'RGB image-based classifier' for the class of
'post-harvest growth' on the other hand. The model with the best performance was used
within the subsequent classification procedure.

Precision ' = TP/ (TP + FP) (1)

recall! = TP/ (TP + FN) )

K''=(P(a) - P(e) / (1 - P(e)) 3)

error rate ' = (FP + FN) /(TP + FP + FN + TN) 4)
accuracy*2 =(TP+TN) /(TP + FP + FN + TN) %)

In Equations (1-5), TP is the number of true positives, TN the number of true negatives,
FP the number of false positives, FN the number of false negatives, P(a) is the relative
observed percentage of agreement among the raters and P(e) is the expected percentage
of agreement.

3.3. Evaluation

The evaluation of post-harvest growth detection was performed at various levels,
involving the classifier itself as well as the comparison with the reference data of
classified RGB image and calculated ND VI of hyperspectral data.

3.3.1. Evaluation of the derived classification rules by reference data

The classified point cloud was evaluated by comparison with the classified image
of: 1) cell-by-cell error assessment; and 2) calculated total post-harvest growth area
coverage in percent of sample plot one. For the cell-by-cell error assessment, binary
raster maps of the classified point cloud were derived, taking the most frequent class of
the laser points within a raster cell. The cell size was set to 0.005 m based on the average

! used for evaluation within model construction
2 used for evaluation with reference data
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point distance of the point cloud. However, varying point distribution and shadowing
effects in certain areas of the TLS data confined the comparison of rasterized coverage to
cells that have values in the LiDAR-derived case. The accuracy (Equation 5) as a
measure of the closeness of TLS to the RGB classification (true) was calculated.
Furthermore, area coverage per Penta-Spek footprint was calculated from the binary
raster maps to relate the amount of vegetation coverage with ND VI7s.

3.3.2. Evaluation of the transferability of derived classification rules and of the effect of
point density on classification

The transferability of derived classification rules from training data to remaining
field data was performed by rule allocation to a second sample plot (test data) 20 m
distant from the training data location. In order to assess the precision of the classification
via TLS, the effect of point density on classification performance, due to different
scanning distance, was assessed using five single scan positions located around the
training data. For each point dataset variant, the same processing steps of feature
calculation, correlation analysis, and model construction were performed. Due to
decreasing point density and increasing mean point distance, the local features of single
laser points of Tab. 1 were calculated within a search radius R of 0.02 m, 0.05 m and
0.1 m and with derived amplitude thresholds A7 per scan position (Tab. 6).

4. Results and Discussion
4.1. Radiometric Correction of Signal Amplitudes

The data-driven range correction of signal amplitudes shows the lowest RMSE
(2.1%) for a polynomial of degree seven (Fig. 3). The maximum recorded amplitude is
reached at a distance of approximately 10 m, and decreases with distance thereafter. This
indicates a polynomial approximation, as well as certain homogeneity of the used natural
surfaces. Comparing the coefficient of variation of all amplitude values for all scan
positions before and after correction, a reduction from 7.1% to 2.7% is given. The
remaining variation can be explained by a certain roughness of the natural terrain (Héfle,
2014).

The evaluation of the range correction was based on one reference target with
known and constant reflectance placed in each scan position. After the range correction,
the calculated standard deviation of all target medians shows lower value (1.10%)
compared to the standard deviation before the range correction (4.13%). Additionally, the
performance was visually explored by comparing the point cloud colored by uncorrected
and corrected amplitude values (Fig. 4). The comparison shows the successful
elimination of the range effect. Due to higher variation, scan position three was excluded
for further analysis.
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Fig. 4. Comparison of amplitudes (a) before and (b) after radiometric correction based on
field-derived correction function, showing scan position six.

4.2. Feature Extraction and Correlation Analysis

Already the corrected signal amplitude 4 shows a high separability between
ground and post-harvest growth with amplitude <0.783 DN for post-harvest growth,
which can clearly be seen by the colored distribution functions (DF) in Fig. 5. This
separability is confirmed by an applied decision tree (DT) considering only the amplitude
values. The DT defines post-harvest growth with amplitude <0.767 DN with a precision
of 94.3%. Both approaches exhibit lower signal amplitude values for post-harvest growth
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with a slightly differing threshold. The difference between DF and DT can be explained
on the one hand by the applied moving median in DF, resulting in a different threshold
depending on the overlap parameter used, and on the other hand by the DT taking the
overlapping area for distinction into account. The threshold 47 derived by DT (0.767 DN)
was used to calculate the features listed in Tab. 1. In general, the lower signal amplitude
may be explained by the low reflectance of plants at 1550 nm. The plants' reflectance
spectrum is, among other things, influenced by the water content which shows higher
absorption around 1500 nm and results in lower reflectance compared to dry ground
(Fabre et al., 2011). Dry soil as well as crop residues’ dry matter, on the other hand, are
spectrally similar (Streck et al., 2002), and show increasing amplitude with decreasing
moisture (Daughtry & Hunt, 2008; Whiting et al., 2004).

a) Harvest Residues and Soil b) Ground
60 B Harvest Residues [{ 60
Hl Soil :

S50p

Frequency

0.75 0.80 0.85 0.75 0.80 0.85

¢) Post-Harvest Growth d) Moving Median

| — EDSl-ItLawm {1 6o} —— Harvest Residues [
Towl .
— Soil

— Post-Harvest
Growth

Ground

40

30

Frequency

' e
DOb e “; ..................... 1 20k e

0.75 0.80 0.85 0.90 8.65 0.70 0.75 0.80 0.85 0.90
Amplitude [0..1] Amplitude [0..1]

Fig. 5. Distribution function of corrected amplitude of the different classes occurring in
field data: (a) Harvest residues and soil; (b) ground (harvest residues and soil); (c) post-
harvest growth and (d) moving median of all classes and the resulting threshold.

Correlation analysis was applied to identify the similarity of the features in the
feature space. The features ER, A.,, and number of points in 2D and 3D show low to
high correlation. High correlation is represented in both sides of correlation degrees: 1)
the expected positive correlation (PCC = 0.9) between StdZ and Zdiff; and 2) negative
correlation (PCC < -0.7) between the amplitude-based features (A, Amean) and Zdiff.
The second group of correlations reflect the characteristics of ground and post-harvest
growth. For example, post-harvest growth is characterized by lower amplitude values
considering Fig. 5 and by distinct elevation differences compared to ground.

The Gini Index Weighting as well as the features included in the calculated
principal components can be used to predict the explanatory power of the features; the
Gini Index as a measure of inequality and PCA as measure of the variance of features.
The most relevant features according to Gini Index Weighting are Apean, Adens, A,
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followed by Zdiff and StdZ (cf. Fig. 6), with higher weights for radiometric features than
geometric features. According to the PCA, the most relevant features are the number of
neighboring points within a 5 cm search radius and Ag.,s. The features weighting by PCA
shows a significance of 0.7 for Nbs2D and Nbs3D and for Ag.,s significances of 0.4 to
0.5. All the other features follow with a significance of less than 0.2.

The correlation analysis underlines the potential of radiometric features as well as
the consideration of the local neighborhood of points for distinction of ground and post-
harvest growth. Post-harvest growth tends to lower amplitude values and elevation
differences up to 12 cm compared to ground. The results are comparable to former
studies where A,.., and the StdZ are chosen for vegetation classification (Hofle, 2014;
Koenig et al., 2013; Rutzinger et al., 2008).

Gini Index Weighting Principal Component Analysis
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Fig. 6. Feature importance by Gini Index Weighting (left) per feature group and by PCA
(right).

4.3. Classification

In order to achieve the best accuracy and to test the power of the derived feature
groups, three subsets of feature groups from the training data were chosen: 1) geometric
features; 2) radiometric features; and 3) a combination of geometric and radiometric
features.

The most reliable classification is achieved by using the combination of geometric
and radiometric features, resulting in >99% precision (Tab. 2). Adding geometric features
leads to a small increase in precision for the unsupervised classifiers and it reduces the
error rate by 0.7%. Both tree induction classifiers predominantly discriminate the post-
harvest growth by Ag.,s as the first node, and the node with the largest size, and in
subsequent order by the geometric features such as standard deviation in elevation StdZ
(Fig 7). The most frequently used features are in the search radius of 0.02 m and 0.05 m.
The derived amplitude thresholds of 0.772 + 0.007 DN are comparable within the tree
induction.
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Fig. 7. Derived classification tree of training data, which achieved the highest precision
from decision tree (a) and random forest (a)(b). The amount of true positives per class at
each leaf node is given in brackets.

Table 2. Results of supervised classification (precision (p), recall (r), Cohen's kappa (x),
error rate (e)). For random forest, the overall accuracy for 20 trees is given as well as the
coefficient of variation of all trees in brackets.

Supervised classifier

Features

Decision Tree Random Forest Naive Bayes
P 94.3% 93.8% ( 1.2%) 88.3%
ted val

gfogercl:i vame r 72.7% 72.7% ( 3.0%) 80.7%
am lgit de K 0.65 0.65( 0.05) 0.66
P e 17.8% 18.0% ( 19.1%) 16.8%
p 88.1% 96.4% ( 11.9%) 81.5%
Geometric r 95.9% 76.8% ( 27.9%) 79.3%
features K 0.80 0.71 ( 0.21) 0.69
e 9.5% 14.6% ( 40.7%) 15.8%
p 99.5% 99.0% ( 2.5%) 98.2%
Radiometric r 99.4% 99.0% ( 7.8%) 99.2%
features K 0.98 0.98 (  0.10) 0.97
e 0.7% 1.1% (127.2%) 1.5%
Geometric + p 99.9% 99.0% ( 6.3%) 98.7%
radiometric r 100.0% 99.6% ( 11.0%) 99.7%
K 0.98 098 ( 0.19) 0.98

features
e 0.0% 0.8% (123.4%) 0.9%

Applying the k-Means, the combination of geometric and radiometric features
shows a weak silhouette coefficient and low precision compared to using solely
radiometric features for the whole training dataset (SCcombined 0.4 < SCradiometric 0.7 and
Peombined 32.4% < Pradiometric 61.4%) (Tab. 3). The weaker SC of using the combination of
geometric and radiometric features is due to small elevation differences of post-harvest
growth and ground points.
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Table 3. Error assessment of cluster analysis (k-Means) of labeled training data using
subset 2 (radiometric features) and subset 3 (combined geometric and radiometric
features).

Class Silhouette coefficient
Post- Range Mean %
Harvest  Ground [min;max] Std
Growth
Subset 2 Cluster 1 (Ground) 57.1% 41.3% [0.01;0.85] 0.76 +£0.14
Cluster 2 (Post- 61.4% 38.6% [0.01;0.81] 0.69+£0.19
Harvest Growth)
Precision 61.4%
Recall 57.1%
Kappa 0.03
Error rate 47.5%
Subset 3  Cluster 1 (Ground) 47.6% 62.2% [-0.02;0.61] 0.43+0.15
Cluster 2 (Post- 52.4% 37.8% [-0.06;0.55] 0.36=+0.16
Harvest Growth)
Precision 52.4%
Recall 63.8%
Kappa 0.15
Error rate 43.3 %

The benefit of combining geometric and radiometric features of a local
neighborhood to distinguish between ground and post-harvest growth is deduced from
comparing the results and the tendency of increasing precision of the applied classifiers.
The relevance of the local radiometric features is also reflected in the Gini Index
Weighting and the PCA (Fig. 6). Small elevation differences of ground and post-harvest
growth lead to a lower impact of geometric features for classification. In the case of
higher plants, the power of geometric features increases, which was also shown in others
studies of vegetation detection (Andujar et al., 2013; Hofle, 2014; Lumme et al., 2008).

4.4. Evaluation with Reference Data

The evaluation proceeded on two levels to demonstrate the potential of using
LiDAR data for classification: 1) cell-wise comparison and comparison of calculated area
coverage of LIDAR and of RGB image classification and 2) calculated coverage of
LiDAR and RGB in relation to the calculated NDVI;ps within the footprint of
hyperspectral sensor of sample plot one. Due to varying spatial resolution and data
models of different datasets, coverage raster maps were computed and compared.

4.4.3. Comparison with RGB Image Classification

The calculated coverage of post-harvest growth of the sample plot varies from
3.6% to 19.2% for TLS based classification, while the RGB image analysis shows
coverage of 5.1% (Tab. 4). The best match in coverage is reached by Naive Bayes and
tree induction (Fig. 8b-d), whereas the k-Means overestimates the post-harvest growth
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coverage using the combination of geometric and radiometric features. The small
overestimation in Naive Bayes and tree induction results from considering the local
neighborhood and its effect within the transition area of post-harvest growth and ground.
In comparison to the k-Means, Naive Bayes and tree induction have detected the majority
of the post-harvest growth patches with higher precision (Tab. 5). Applying only
radiometric features, k-Means achieves comparable results (Fig. 8¢) and a coverage value
0f3.6%. A cell-by-cell error assessment of LiDAR-derived classes and classes derived by
image analysis yields a high precision of >77% (Tab. 5), considering only cells with a
label in LiDAR maps. The cell-by-cell error assessment of LIDAR and the RGB image
can only be used to some extent due to misclassification in the RGB classification
process or due to effects caused by downscaling the resolution of the RGB image. The
calculated coverage per defined area in contrast provides a good indication of the amount
of post-harvest growth.

The transferability of the derived classification rules to the whole field can be
seen in the test data of another sample plot 20 m distant from the training data. A
comparison of the classified point cloud and the corresponding RGB image (Fig. 9)
shows agreement with the allocation of small post-harvest growth patches.

238 Ground (P},z:“],;[;w est

Fig. 8. Classified sample plot 1 (1m?): (a) RGB image; (b) classified by DT; (c) classified
by RF; (d) classified by Naive Bayes analysis using geometric and radiometric features;
(e) classified by k-Means using radiometric features and (f) classified by RGB.
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Fig. 9. Classified sample plot 2 (1m?), marked with good and bad accordance: (a) RGB

image; (b) classified by RF.

Table 4. Resulting ratio of post-harvest growth points and resulting coverage at cell size
of 0.005 m. The calculation based on the classification by using a combination of
geometric and radiometric features and for k-Means by using radiometric features,
additionally given in brackets. Coverage is given as the percentage of post-harvest growth
points within sample plot one. The remaining percentage represents areas with no point

classification.
Data set Coverage
Post-harvest growth Ground

3D point cloud (ratio of

number of points per class)
1) Decision Tree 21.5% 78.5%
2) Random Forest 22.4% 77.6%
3) Naive Bayes 21.5% 78.5%

4) k-Means

2D binary raster maps
1) Decision Tree
2) Random Forest
3) Naive Bayes
4) k-Means

RGB-image analysis

47.4% (13.3%)

6.8%
7.1%
6.6%
19.2% (3.6%)

5.1%

52.6% (86.7%)

29.5%
29.3%
29.7%
17.2% (32.7%)

94.9%

Table 5. Error assessment of cell-by-cell comparison between the rasterized maps of

LiDAR and RGB classification (positive predictive class 'post-harvest growth').
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Supervised classifier Unsupervised

classifier

Decision Random Naive k-Means

Tree Forest Bayes (radiometric feat.)

accuracy a 77.3% 81.2% 80.9% 89.9%
precision p 83.3% 91.7% 91.7% 50.0%
recall r 0.18% 0.24% 0.25% 0.24%
kappa K 0.32 0.41 0.41 0.30
error rate e 22.7% 18.8% 19.1% 10.1%

4.4.3. Comparison with NDVI

All applied classification methods detect and locate post-harvest growth precisely.
The NDVI as an indicator for the vitality of vegetation may be reflected in the coverage
of green vegetation. The regression analysis of NDVI;ys with calculated coverage per
classification method shows a polynomial correlation of degree 2 within sample plot one
(Fig. 10). The higher coverage, in the upper right area of the sample plot (Fig. 8, A4 and
C4), is reflected in a higher NDVI;os of >0.17. The highest coefficient of determination
(R?) of 0.80 is achieved by image analysis followed by all LIDAR-based classifiers with
R?0f0.71 £0.03.

I I I
* DT (R*= 0.6658) :
e RF (R? = 0.7339)
Naive Bayes (R*=0.7456) X
o k-Means (R? = 0.7092)
60% - * RGB (R2=0.8012)

Coverage

30% g B—
==
I / ]
o :-__..-"‘

15% — 1
L ) @ o] - *
0% ¢ 8 ¢ 8§ 5= 3
0.040 0.046 0.056 0.061 0.061 0.080 0.115 0.173
NDVITOS

Fig. 10. Polynomial regression (degree 2) and R? between ND VI ;s and post-harvest
growth coverage (%) estimated by LiDAR data and RGB-image analysis within the
sample plot one.

4.5. Effect of Point Density on Classification

To evaluate the heterogeneous point density of static TLS and its effect on the
applied post-harvest growth classifications, tests concerning the scan distances and
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resultant differences in point density were performed. Compared to ground within all
scan positions, the training data shows similar behavior of lower mean amplitude values
for post-harvest growth (Tab. 6). The thresholds derived from the decision tree and from
the density function differ slightly (+£1%) from the threshold derived from the whole data
(dense data). According to the calculated weights of the Gini Index, the higher
importance of radiometric features compared to geometric features within all distances
are also given (Fig. 11). However, the importance of radiometric features decreases with
increasing distance from >0.4 (~ 12 m) to <0.35 (~25 m). A possible explanation is the
increasing mean point distance and the subsequently lower similarity of amplitudes
between all points within the search radius compared to elevation differences. Especially
the transition from ground to post-harvest growth with lower intermediate steps in
elevation shows higher values of standard deviation of elevation and lower mean
amplitude. The gain in importance of geometric features can be seen for scan position six
in higher weights of Dz and StdZ. Within each scan position, A4e,s and Dz are the most
relevant features, which corresponds to the results of using dense data.

Scan position four shows different behavior in the importance of the features of
the two target classes. In consequence of the mean distance of 30 m of the scan position
four and corresponding to the distance limitation of 30 m, the training data are reduced
and post-harvest growth patches with larger elevation values are not considered. This
reduction results in the lower importance of geometric features for classification.

The assigned rules derived by DT to the point cloud of sample plot one for scan
positions 1, 2, 4, and 5 show a good agreement to the DT classification of dense data
(Fig. 12) and to the calculated post-harvest growth coverage of 12.3% + 0.6% (Tab. 8) at
0.02 m resolution. The larger post-harvest growth patches of larger than 10 x 10 cm are
classified by all scan positions, whereas smaller patches (e.g. Fig. 12, B2) are often not
detected by the derived rules. The derived model of scan position six results in higher
misclassification of ground points (Fig. 12¢, C3).

The benefit of using the combination of geometric and radiometric features and
the necessity of distance limitation is underlined when investigating the classification
results based on the data with different point densities. Larger post-harvest growth
patches can be classified by having at least a point density of 2 pts./0.01 m?. It can be
summarized that higher point densities allow for the detection of smaller post-harvest
growth patches.

Table 6. Characteristics of training data per scan position.

Position Position Position Position Position

1 2 4 5 6
Mean distance [m] 12 21 30 15 25
Mean incidence angle to 70 79 82 74 81
surface normal [°]
Mean point density 9 2 2 13 1
[pts/0.01m?]
Amplitude threshold [DN] 0.776 0.790 0.766 0.764 0.810
(DT)
Amplitude threshold [DN] 0.779 0.783 0.777 0.770 0.794
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(DF)
Mean Amplitude [DN]

Ground 0.802 0.810 0.791 0.824 0.807
Post-Harvest Growth 0.755 0.776 0.703 0.750 0.794
a) A b) Scan Position 4 ¢) Scan Position 6
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Fig. 11. Feature importance of spatial features by Gini Index per scan position, without
position 3; (a) features; (b)-(f) ordered by decreasing distance.

Table 7. Distance dependent DT classification (precision (p), recall (r), Cohen's kappa
(x), error rate (e)) of single scan positions.

Position 1

Position 2

Position 4

Position 5

Position 6

Corrected value
of signal
amplitude

Geometric
features

Radiometric
features

Geometric +

o A =T o AR BT o AR =T

o

95.7%
48.0%

0.72
47.0%

83.2%
91.1%

0.74
14.5%

98.9%
100.0%
0.98
0.7%

98.9%

95.0%
81.6%

0.71
15.2%

93.9%
94.5%
0.79
7.8%

95.9%
100.0%
0.97
2.9%

95.9%

100.0%
92.4%
0.90
3.6%

68.2%
97.8%

0.56
22.8%

100.0%
100.0%
1.0
0.0%

100.0%

94.4%
77.0%

0.69
15.9%

97.9%
87.6%
0.78
8.2%

100.0%
100.0%
0.99
0.0%

99.6%

1
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97.6%
59.7%

0.56
20.4%

00.0%
77.6%

0.80
11.0%

90.4%
98.5%
0.71
5.8%

89.3%



radiometric r 100.0% 100.0% 100.0% 100.0% 100.0%
features K 0.98 0.97 1.0 0.99 0.66
0.7% 2.9% 0.0% 0.2% 5.8%

Table 8. Resulting coverage of post-harvest growth for different scan positions at cell
size of 0.02 m. The calculation based on DT classification by using a combination of
geometric and radiometric features. Coverage is given as the percentage of post-harvest
growth points within sample plot one.

Position 1 Position 2 Position4 Position 5 Position 6 All
Post-H t
ost-Hiatves 12.0% 12.9% 5.7% 11.9% 12.7% 12.9%
Growth
No Data 28.3% 22.4% 63.6% 29.7% 74.9% 22.4%

3 Ground PGOrSO;PtﬁWCSt

Fig. 12. Classified sample plot 1 (1m?): (a) RGB image; (b)-(f) scan position 1-6 (without
position 3) classified by DT analysis using geometric and radiometric features.

5. Conclusion

The findings of this paper confirm the potential of using TLS and the combination
of derived geometric and radiometric information for the detection of post-harvest-
growth patches. This supports the outcomes of Andujar ef al. (2013) and Hoéfle (2014).
By using radiometric information in combination with geometric information it is even
possible to detect objects of low elevation difference. The radiometric correction of the
distance effect was possible by using natural reference targets (bare soil transect),
reducing the standard deviation of amplitude of homogeneous areas (e.g. reference targets
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of Spectralon®) from 4.3% to 1.1% on average. The separability between the two target
classes 'post-harvest growth' and 'ground' is confirmed by comparative classification
analysis. High precision of >99% is reached in model construction for all supervised
classifiers. Furthermore, comparable post-harvest growth coverage values are derived by
LiDAR (~ 7%) compared to coverage of 5% by RGB image classification. The benefit of
using radiometric information in object detection is shown by the improved precision in
classification of up to 99% and the reduced error rate of <0.1% compared to a precision
of <88% and error rate of >9% without using radiometric information. Even a low point
density of 2 pts. /0.01 m? is sufficient for the detection of larger post-harvest growth
patches (10 x 10 cm), confirmed by a precision of >96% and an error rate of <2.9%
within DT classification.
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